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Fire Detection and Location through Inverse Problem Solution

R.F. Richards and O.A. Plumb
Washington State University, Pullman, WA, USA

Introduction
A prototype system which can detect, locate, and size an accidental fire within the first

few minutes of the fire’s ignition is presented. The prototype system employs a black and white
video camera to monitor color-changing temperature sensitive sensors distributed around the
space to be protected. Transient temperatures revealed by the sensors and gathered by the video
camera are used as data to locate and size the f~e in an algorithm based on the solution of an
inverse heat transfer problem. Limits on the accuracy of the inverse problem solution algorithm,
both in locating fires and determining their heat release rate are established using computer
synthesized fire data. The validity of the computer simulations is verified with results of
experimental tests of the prototype detection system in locating and sizing flame sources in a lab
scale enclosure.

Inverse Problem Solution Algorithm
The problem of locating a f~e and determining its growth rate can be formally posed as an

inverse problem’. In the present study the problem is taken to be one of parameter estimation in
which three unknown parameters are to be found: x, y, and cz. The location of the fire is
described by the Cartesian coordinates, (x,y), where the fwe is assumed to lie in the plane of the
compartment floor. The fue growth rate is determined by the parameter CL,which follows from
the functional form of the fire heat release rate assumed in the present work:

Q=a4 (1)

The quadratic form is chosen following Heskestad’s recomrnendation2 for the initial stages of fm
growth. Here Q is the fw’s convective heat release rate in kW, and t is the elapsed time from the

ignition of the tire in seconds. The parameter to be found, CL,is seen to have units of kW/s2.
Solution of the inverse problem requires two steps: f~st prediction of the transient

temperature field using a numerical fire model, and second rni -mmization of the residuals between
measured and predicted temperatures to determine the most probable location and heat release
rate for the fire. The first step, determination of the temperature field given the heat source, is
commonly referred to as solution of the forward problem. The second step, comparison of
transient temperature data gathered by sensors to predictions of those temperatures by the
numerical fue model to obtain location and heat release rate information about the fire, comp]etes
solution of the inverse problem.

In the present study the solution of tie forwmd problem is found using the compartment
f~e model LAVENT. LAVENT, a two-zone fire model employing sefi-empinc~ models of the
buoyant plume and ceiling jet is able to compute convective heat fluxes from a fwe to the ceiling
of a compartments. Forward problem solutions in the form of trmsient temperature fields are
found for a set of many fire scenarios, each consisting of a f~e with a given location and growth
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rate, (x,y,ct), in the relevant compartment geometry. Using the transient temperature solution for
each scenario, the times at which each sensor will be activated can be determined, given both the
locations of the temperature-sensitive sensors and their activation temperature

The inverse problem solution algorithm can be applied to a fire of unknown location and
growth rate, given data in the form of times at which individual sensors are activated as a result of
the plume of hot gases rising from the fue. The inversion algorithm proceeds by subtracting
measured times-to-activation from predicted times-to-activation and then summing the squares of
the differences. The solution to the inverse problem is taken to be the values of the parameters x,
y, and a for the fwe scenario which minimizes the sum of squares of residuals over the complete

set of fire scenarios

Prototype Fire Detection System
A prototype fire detection system has been assembIed and set up in a model enclosure.

The prototype system consists of a 486 personal computer, a PULNEX TM-7CN black and white
video camera, a SCENTECH IV-P24 frame grabber, and an array of color-changing sensors. The
enclosure is 1 m high, 2.75 m wide and 2.75 m deep, with a ceiling made of 2.5 cm thick
polystyrene foam. The side walls are open. Temperature-sensitive color-changing sensors, each
10 by 10 cm squares, are hung from the enclosure ceiling in a square grid, spaced one meter apart.
Two types of sensors have been tested. Sensors have been fabricated from thermochromic liquid
crystal sheets which display a a color-play over a given temperature range, and sensors have been
fabricated from wax based paints which liquify and clear at set temperatures.

The prototype system is able to monitor the TLC sensors on a nearly continuous basis.
The personal computer cornmands the frame grabber to “grab” images from the black and white
video camera, digitize the images and transfer the matrix of pixel values to the PC’s RAM about
once a second. Once in memory, the code compares the pixel values of each TLC sensor image
with pixel values of a black “normalizing” surface located adjacent to the TLC sensor.
Comparing changes in the TLC sensor with an unchanging “normalizing” surface enables the code
to distinguish color changes in the TLC sensor from changes in sensor lighting.

If the code detects a color change in any TLC sensor, the location of the sensor and the
time of the change (to the nearest second) are recorded. Upon the activation of five TLC sensors
within a time span of five minutes a fwe alarm is called. Once the alarm is called and a fire has
been detected, the locations and times-to-activation of the five TLC sensors are transferred to the
inverse problem solution algorithm to be used as data to locate and sized the fire.

Results
The performance of the inverse problem solution algorithm, on which the proposed f~e

detection system is based, was evaluated by simulating ftres with known location and growth rate
(x,y,u) in a compartment. Both systematic and random error was added to the computer
simulated data following tie model:
Simulated times-to-activation, t,i~,iwere then:

i~imi - “–tuv i+(a+b;uv,i)+G(a)
7 >

(2)
where tLAv,i is the time-to-activation of the ith sensor as calculated by LAVENT, a and b are
constants characterizing systematic error, and G(G) is a random number chosen from a norrmd
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distribution with standard deviation 6. Note that the parameter a has units of seconds and
represents a constant time bias, while the parameter b, which is dimensionless. represents a
constant percentage error in elapsed time.

Sensor times-to-activation calculated for the simulated fires were then used as data for the
inversion algorithm to reconstruct the location and heat release rate of the simulated fires.
Results of the evaluation of the inverse problem solution algorithm for fire detection are given in
Figs. 1 through 6. Two results are of particular interest in the present study: the speed with which
the system can detect a fire, and the accuracy with which the inverse algorithm can locate and size
the fire.

Figure 1 shows probability distribution functions (pdfs) for times-to-activation for the
fwst and fifth sensors for a slow-growing f~e (a=2.98 W/s2) and a fast-growing fire (ct=42.6
W/s*). Upon activation of the fifth sensor the inversion algorithm has sufficient information to
locate the fire. The slow-growing fwe is seen to be located in three minutes and the fast-growing
fire within one minute.

Figures 2a and b demonstrate the effect of random errors and systematic errors on the
inversion algorithm’s accuracy in predicting fire location. Results for both slow-growing and fast-
growing f~es are given. Location error is reported as the distance between predicted and actual
f~e locations, given in centimeters. The effect of random error is shown in Fig.2a. In that figure,
where no systematic error has been added (LAVENT is assumed to be a “perfect” fire model),
pdfs for simulations of fwes with no random error (0=0 see) or moderate random error (0=5
see), are given. Figure 2b shows the effect of systematic or model error on the accuracy of the
inversion algorithm to predict the fwe location. Pdfs are given for f~e data with an added random
emor with 0=5s for cases of systematic error corresponding to a=os, a=40s, b=O, and b=O.6.

Errors in location predictions by the inverse problem solution algorithm are seen to be
much more sensitive to random errors in fire data than to systematic errors in the fue model. This
conclusion can be seen more clearly in Figs 3a and 3b where results for fast-growing fires are
given. In Figs. 3a and b both the median location error and 95% confidence intervals about the
median error are plotted versus random error standard deviation, cr. The 95% confidence interval
represents a location error greater than the location errors for 95$ZOor 950 out of 1000 fires in a
test run. In Fig. 3a location error is plotted for three cases of systematic erro~ a=O, 20, 40 sec
with b= 0.0 while in Fig, 3b location error is plotted for three other cases of systematic error: a=O
sec with b=O, 0.2,0.4.

In both figures varying systematic error by varying the parameters a and b has little effect
on either the median or the 9570 confidence intervals for location errors. On the other hand,
increasing the random error standard deviation, a, causes monotonic increases in both the
inversion algorithm’s median location error and 95~0confidence interval.

Figures 4a and b demonstrate the effect of random and systematic errors on the accuracy
of the inversion algorithm to predict the f~e heat release rate for fast and slow-growing fires.
Heat release rate error is reported as the ratio of heat release rate predicted by the inversion
algorithm, divided by the actual f~e’s heat release rate, at the time of the fifth sensor activation.
The effect of random error is shown in Fig. 4a where pdf’s are given for fire data with cr=Oand 5
sec with no systematic error. The effect of systematic error is shown in Fig. 4b where pdfs are
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given for fue data with added random error with 0=5s and cases of systematic error
-.. , .

corresponding to a=Os, a=40s, b=O, and b=O.6.
Figures 5 a and b show the large errors in heat release rate predictions that systematic

errors in the fire model used in the inversion algorithm can lead to. Results given are for fast-
growing fires only. Predicted heat release rate is seen to drop monotonically below actual heat
release rate as either parameter a or b increases. Random errors can be seen to have little effect
on the median heat release rate error, although larger random errors do cause the 959?0confidence
intervals on heat release rate error to spread substantially.

Some preliminary tests of the prototype fire detection system have been made. Twenty
tests were run, in which a gas fueled camp stove (which produced about 2 kW thermal) was
ignited and then placed in the model enclosure. The location and heat release rate of the flame
source as determined by the prototype fwe detection system were compared against the actual
location and heat release rate of the flame source. Figures 6 a and b show the results of these
comparisons. The figures give pdf’s for location error (Fig. 6a) and heat release rate error (Fig.
6b). Figure 6 a shows that the prototype system was able to locate the flame source within a
radius of 45 cm in all twenty tests. Figure 6 b shows that the prototype system was able to
determine the flame source’s heat release rate to within a factor of two for most test cases. For a
few cases the prototype system was unable to determine a value for the flame source’s heat
release rate. Those cases are indicated in the figure as having QpdQ~ct = 0.0.
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